哈夫曼树

组别:入门级
难度:4

什么是哈夫曼树

哈夫曼树又称最优树,给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

哈夫曼编码
哈夫曼编码是一种压缩编码的编码算法,是基于哈夫曼树的一种编码方式。哈夫曼树又称为带权路径长度最短的二叉树。

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// C++ program for Huffman Coding

#include <cstdlib>
#include <iostream>
using namespace std;

// This constant can be avoided by explicitly
// calculating height of Huffman Tree
#define MAX_TREE_HT 100

// A Huffman tree node
struct MinHeapNode {
	// One of the input characters
	char data;
	// Frequency of the character
	unsigned freq;
	// Left and right child of this node
	struct MinHeapNode *left, *right;
};

// A Min Heap: Collection of min-heap (or Huffman tree) nodes
struct MinHeap {
	// Current size of min heap
	unsigned size;
	// capacity of min heap
	unsigned capacity;
	// Array of minheap node pointers
	struct MinHeapNode** array;
};

// A utility function allocate a new
// min heap node with given character
// and frequency of the character
struct MinHeapNode* newNode(char data, unsigned freq){
	struct MinHeapNode* temp = (struct MinHeapNode*)malloc(
		sizeof(struct MinHeapNode));
	temp->left = temp->right = NULL;
	temp->data = data;
	temp->freq = freq;
	return temp;
}

// A utility function to create
// a min heap of given capacity
struct MinHeap* createMinHeap(unsigned capacity){
	struct MinHeap* minHeap
		= (struct MinHeap*)malloc(sizeof(struct MinHeap));
	// current size is 0
	minHeap->size = 0;
	minHeap->capacity = capacity;
	minHeap->array = (struct MinHeapNode**)malloc(
		minHeap->capacity * sizeof(struct MinHeapNode*));
	return minHeap;
}

// A utility function to swap two min heap nodes
void swapMinHeapNode(struct MinHeapNode** a,struct MinHeapNode** b){
	struct MinHeapNode* t = *a;
	*a = *b;
	*b = t;
}

// The standard minHeapify function.
void minHeapify(struct MinHeap* minHeap, int idx){

	int smallest = idx;
	int left = 2 * idx + 1;
	int right = 2 * idx + 2;

	if (left < minHeap->size
		&& minHeap->array[left]->freq
			< minHeap->array[smallest]->freq)
		smallest = left;
	if (right < minHeap->size
		&& minHeap->array[right]->freq
			< minHeap->array[smallest]->freq)
		smallest = right;
	if (smallest != idx) {
		swapMinHeapNode(&minHeap->array[smallest],
						&minHeap->array[idx]);
		minHeapify(minHeap, smallest);
	}
}

// A utility function to check if size of heap is 1 or not
int isSizeOne(struct MinHeap* minHeap){
	return (minHeap->size == 1);
}

// A standard function to extract minimum value node from heap
struct MinHeapNode* extractMin(struct MinHeap* minHeap){

	struct MinHeapNode* temp = minHeap->array[0];
	minHeap->array[0] = minHeap->array[minHeap->size - 1];
	--minHeap->size;
	minHeapify(minHeap, 0);
	return temp;
}

// A utility function to insert a new node to Min Heap
void insertMinHeap(struct MinHeap* minHeap,struct MinHeapNode* minHeapNode){
	++minHeap->size;
	int i = minHeap->size - 1;
	while (i&& minHeapNode->freq< minHeap->array[(i - 1) / 2]->freq) {
		minHeap->array[i] = minHeap->array[(i - 1) / 2];
		i = (i - 1) / 2;
	}
	minHeap->array[i] = minHeapNode;
}

// A standard function to build min heap
void buildMinHeap(struct MinHeap* minHeap){

	int n = minHeap->size - 1;
	int i;
	for (i = (n - 1) / 2; i >= 0; --i)
		minHeapify(minHeap, i);
}

// A utility function to print an array of size n
void printArr(int arr[], int n){
	int i;
	for (i = 0; i < n; ++i)
		cout << arr[i];
	cout << "\n";
}

// Utility function to check if this node is leaf
int isLeaf(struct MinHeapNode* root){
	return !(root->left) && !(root->right);
}

// Creates a min heap of capacity
// equal to size and inserts all character of
// data[] in min heap. Initially size of
// min heap is equal to capacity
struct MinHeap* createAndBuildMinHeap(char data[],int freq[], int size){
	struct MinHeap* minHeap = createMinHeap(size);
	for (int i = 0; i < size; ++i)
		minHeap->array[i] = newNode(data[i], freq[i]);
	minHeap->size = size;
	buildMinHeap(minHeap);
	return minHeap;
}

// The main function that builds Huffman tree
struct MinHeapNode* buildHuffmanTree(char data[],int freq[], int size){
	struct MinHeapNode *left, *right, *top;

	// Step 1: Create a min heap of capacity
	// equal to size. Initially, there are
	// modes equal to size.
	struct MinHeap* minHeap= createAndBuildMinHeap(data, freq, size);

	// Iterate while size of heap doesn't become 1
	while (!isSizeOne(minHeap)) {
		// Step 2: Extract the two minimum
		// freq items from min heap
		left = extractMin(minHeap);
		right = extractMin(minHeap);

		// Step 3: Create a new internal
		// node with frequency equal to the
		// sum of the two nodes frequencies.
		// Make the two extracted node as
		// left and right children of this new node.
		// Add this node to the min heap
		// '$' is a special value for internal nodes, not
		// used
		top = newNode('$', left->freq + right->freq);
		top->left = left;
		top->right = right;
		insertMinHeap(minHeap, top);
	}

	// Step 4: The remaining node is the
	// root node and the tree is complete.
	return extractMin(minHeap);
}

// Prints huffman codes from the root of Huffman Tree.
// It uses arr[] to store codes
void printCodes(struct MinHeapNode* root, int arr[],int top){

	// Assign 0 to left edge and recur
	if (root->left) {
		arr[top] = 0;
		printCodes(root->left, arr, top + 1);
	}
	// Assign 1 to right edge and recur
	if (root->right) {
		arr[top] = 1;
		printCodes(root->right, arr, top + 1);
	}
	// If this is a leaf node, then
	// it contains one of the input
	// characters, print the character
	// and its code from arr[]
	if (isLeaf(root)) {
		cout << root->data << ": ";
		printArr(arr, top);
	}
}

// The main function that builds a
// Huffman Tree and print codes by traversing
// the built Huffman Tree
void HuffmanCodes(char data[], int freq[], int size){
	// Construct Huffman Tree
	struct MinHeapNode* root
		= buildHuffmanTree(data, freq, size);
	// Print Huffman codes using
	// the Huffman tree built above
	int arr[MAX_TREE_HT], top = 0;
	printCodes(root, arr, top);
}

// Driver code
int main(){
	char arr[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
	int freq[] = { 5, 9, 12, 13, 16, 45 };
	int size = sizeof(arr) / sizeof(arr[0]);
	HuffmanCodes(arr, freq, size);
	return 0;
}

LQ1009

Scroll to Top