六、完善程序-2

(最大值之和)给定整数序列 a0​,⋯,an−1​,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤𝑛≤105和 1≤𝑎𝑖≤108。一个序列的非空连续子序列可以用两个下标 𝑙和 𝑟(其中0≤lr<n)表示,对应的序列为 𝑎𝑙,𝑎𝑙+1,⋯,𝑎𝑟。两个非空连续子序列不同,当且仅当下标不同。
例如,当原序列为[1,2,1,2] 时,要计算子序列 [1]、[2]、[1]、[2]、[1,2]、[2,1]、[1,2]、[1,2,1]、[2,1,2]、[1,2,1,2] 的最大值之和,答案为 18。注意 [1,1] 和[2,2] 虽然是原序列的子序列,但不是连续子序列,所以不应该被计算。另外,注意其中有一些值相同的子序列,但由于他们在原序列中的下标不同,属于不同的非空连续子序列,所以会被分别计算。
解决该问题有许多算法,以下程序使用分治算法,时间复杂度 𝑂(𝑛log⁡𝑛)。
试补全程序。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <iostream>
#include <algorithm>
#include <vector>

const int MAXN = 100000;

int n;
int a[MAXN];
long long ans;

void solve(int l, int r) {
    if (l + 1 == r) {
        ans += a[l];
        return;
    }
    int mid = (l + r) >> 1;
    std::vector<int> pre(a + mid, a + r);
    for (int i = 1; i < r - mid; ++i) ;
    std::vector<long long> sum(r - mid + 1);
    for (int i = 0; i < r - mid; ++i)
        sum[i + 1] = sum[i] + pre[i];
    for (int i = mid - l, j = mid, max = 0; i >= l; --i) {
        while (j < r && ) ++j;
        max = std::max(max, a[i]);
        ans += ;
        ans += ;
    }
    solve(l, mid);
    solve(mid, r);
}

int main() {
    std::cin >> n;
    for (int i = 0; i < n; ++i)
        std::cin >> a[i];
    ;
    std::cout << ans << std::endl;
    return 0;
}
Scroll to Top