五、完善程序-1

(第 k 小路径)给定一张 n 个点 m 条边的有向无环图,定点编号从 0 到 n−1,对于一条路径,我们定义“路径序列”为该路径从起点出发依次经过的顶点编号构成的序列。求所有至少包含一个点的简单路径中,“路径序列”字典序第 k 小的路径。保证存在至少 k 条路径。上述参数满足 1≤n,m≤105,1≤k≤1018
在程序中,我们求出从每个点出发的路径数量。超过 1018 的数都用 1018 表示。然后我们根据 k 的值和每个顶点的路径数量,确定路径的起点,然后可以类似地依次求出路径中的每个点。
试补全程序。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include <iostream>
#include <algorithm>
#include <vector>

const int MAXN = 100000;
const long long LIM = 100000000000000000011;

int n, m, deg[MAXN];
std::vector<int> E[MAXN];
long long k, f[MAXN];

int next(std::vector<int> cand, long long &k) {
    std::sort(cand.begin(), cand.end());
    for (int u : cand) {
        if () return u;
        k -= f[u];
    }
    return -1;
}

int main() {
    std::cin >> n >> m >> k;
    for (int i = 0; i < m; ++i) {
        int u, v;
        std::cin >> u >> v; // 一条从u到v的边
        E[u].push_back(v);
        ++deg[v];
    }
    std::vector<int> Q;
    for (int i = 0; i < n; ++i)
        if (!deg[i]) Q.push_back(i);
    for (int i = 0; i < n; ++i) {
        int u = Q[i];
        for (int v : E[u]) {
            if ()
                Q.push_back(v);
            --deg[v];
        }
    }
    std::reverse(Q.begin(), Q.end());
    for (int u : Q) {
        f[u] = 1;
        for (int v : E[u])
            f[u] = ;
    }
    int u = next(Q, k);
    std::cout << u << std::endl;
    while () {
        ;
        u = next(E[u], k);
        std::cout << u << std::endl;
    }
    return 0;
}
Scroll to Top